\(\int \frac {\cos ^3(c+d x) (A+C \sec ^2(c+d x))}{a+b \sec (c+d x)} \, dx\) [682]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 175 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=-\frac {b \left (2 A b^2+a^2 (A+2 C)\right ) x}{2 a^4}+\frac {2 b^2 \left (A b^2+a^2 C\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 \sqrt {a-b} \sqrt {a+b} d}+\frac {\left (3 A b^2+a^2 (2 A+3 C)\right ) \sin (c+d x)}{3 a^3 d}-\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d} \]

[Out]

-1/2*b*(2*A*b^2+a^2*(A+2*C))*x/a^4+1/3*(3*A*b^2+a^2*(2*A+3*C))*sin(d*x+c)/a^3/d-1/2*A*b*cos(d*x+c)*sin(d*x+c)/
a^2/d+1/3*A*cos(d*x+c)^2*sin(d*x+c)/a/d+2*b^2*(A*b^2+C*a^2)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2)
)/a^4/d/(a-b)^(1/2)/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.99, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4190, 4189, 4004, 3916, 2738, 214} \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=-\frac {b x \left (\frac {2 A b^2}{a^2}+A+2 C\right )}{2 a^2}-\frac {A b \sin (c+d x) \cos (c+d x)}{2 a^2 d}+\frac {2 b^2 \left (a^2 C+A b^2\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 d \sqrt {a-b} \sqrt {a+b}}+\frac {\left (a^2 (2 A+3 C)+3 A b^2\right ) \sin (c+d x)}{3 a^3 d}+\frac {A \sin (c+d x) \cos ^2(c+d x)}{3 a d} \]

[In]

Int[(Cos[c + d*x]^3*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]

[Out]

-1/2*(b*(A + (2*A*b^2)/a^2 + 2*C)*x)/a^2 + (2*b^2*(A*b^2 + a^2*C)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[
a + b]])/(a^4*Sqrt[a - b]*Sqrt[a + b]*d) + ((3*A*b^2 + a^2*(2*A + 3*C))*Sin[c + d*x])/(3*a^3*d) - (A*b*Cos[c +
 d*x]*Sin[c + d*x])/(2*a^2*d) + (A*Cos[c + d*x]^2*Sin[c + d*x])/(3*a*d)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[c*(x/a),
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4190

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*n)),
x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[(-A)*b*(m + n + 1) + a*(A + A*n
+ C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && NeQ[
a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d}-\frac {\int \frac {\cos ^2(c+d x) \left (3 A b-a (2 A+3 C) \sec (c+d x)-2 A b \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx}{3 a} \\ & = -\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d}+\frac {\int \frac {\cos (c+d x) \left (2 \left (3 A b^2+\frac {1}{2} a^2 (4 A+6 C)\right )+a A b \sec (c+d x)-3 A b^2 \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx}{6 a^2} \\ & = \frac {\left (3 A b^2+a^2 (2 A+3 C)\right ) \sin (c+d x)}{3 a^3 d}-\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d}-\frac {\int \frac {3 b \left (2 A b^2+a^2 (A+2 C)\right )+3 a A b^2 \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{6 a^3} \\ & = -\frac {b \left (2 A b^2+a^2 (A+2 C)\right ) x}{2 a^4}+\frac {\left (3 A b^2+a^2 (2 A+3 C)\right ) \sin (c+d x)}{3 a^3 d}-\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d}+\frac {\left (b^2 \left (A b^2+a^2 C\right )\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a^4} \\ & = -\frac {b \left (2 A b^2+a^2 (A+2 C)\right ) x}{2 a^4}+\frac {\left (3 A b^2+a^2 (2 A+3 C)\right ) \sin (c+d x)}{3 a^3 d}-\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d}+\frac {\left (b \left (A b^2+a^2 C\right )\right ) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{a^4} \\ & = -\frac {b \left (2 A b^2+a^2 (A+2 C)\right ) x}{2 a^4}+\frac {\left (3 A b^2+a^2 (2 A+3 C)\right ) \sin (c+d x)}{3 a^3 d}-\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d}+\frac {\left (2 b \left (A b^2+a^2 C\right )\right ) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^4 d} \\ & = -\frac {b \left (2 A b^2+a^2 (A+2 C)\right ) x}{2 a^4}+\frac {2 b^2 \left (A b^2+a^2 C\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 \sqrt {a-b} \sqrt {a+b} d}+\frac {\left (3 A b^2+a^2 (2 A+3 C)\right ) \sin (c+d x)}{3 a^3 d}-\frac {A b \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {A \cos ^2(c+d x) \sin (c+d x)}{3 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.12 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.85 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\frac {-6 b \left (2 A b^2+a^2 (A+2 C)\right ) (c+d x)-\frac {24 b^2 \left (A b^2+a^2 C\right ) \text {arctanh}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+3 a \left (4 A b^2+a^2 (3 A+4 C)\right ) \sin (c+d x)-3 a^2 A b \sin (2 (c+d x))+a^3 A \sin (3 (c+d x))}{12 a^4 d} \]

[In]

Integrate[(Cos[c + d*x]^3*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]

[Out]

(-6*b*(2*A*b^2 + a^2*(A + 2*C))*(c + d*x) - (24*b^2*(A*b^2 + a^2*C)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a
^2 - b^2]])/Sqrt[a^2 - b^2] + 3*a*(4*A*b^2 + a^2*(3*A + 4*C))*Sin[c + d*x] - 3*a^2*A*b*Sin[2*(c + d*x)] + a^3*
A*Sin[3*(c + d*x)])/(12*a^4*d)

Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.29

method result size
derivativedivides \(\frac {\frac {2 b^{2} \left (A \,b^{2}+C \,a^{2}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{a^{4} \sqrt {\left (a +b \right ) \left (a -b \right )}}-\frac {2 \left (\frac {\left (-a^{3} A -\frac {1}{2} A \,a^{2} b -a A \,b^{2}-a^{3} C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+\left (-\frac {2}{3} a^{3} A -2 a A \,b^{2}-2 a^{3} C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+\left (-a^{3} A -a A \,b^{2}-a^{3} C +\frac {1}{2} A \,a^{2} b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}+\frac {b \left (a^{2} A +2 A \,b^{2}+2 C \,a^{2}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}\right )}{a^{4}}}{d}\) \(225\)
default \(\frac {\frac {2 b^{2} \left (A \,b^{2}+C \,a^{2}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{a^{4} \sqrt {\left (a +b \right ) \left (a -b \right )}}-\frac {2 \left (\frac {\left (-a^{3} A -\frac {1}{2} A \,a^{2} b -a A \,b^{2}-a^{3} C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+\left (-\frac {2}{3} a^{3} A -2 a A \,b^{2}-2 a^{3} C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+\left (-a^{3} A -a A \,b^{2}-a^{3} C +\frac {1}{2} A \,a^{2} b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}+\frac {b \left (a^{2} A +2 A \,b^{2}+2 C \,a^{2}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}\right )}{a^{4}}}{d}\) \(225\)
risch \(-\frac {A b x}{2 a^{2}}-\frac {x \,b^{3} A}{a^{4}}-\frac {x b C}{a^{2}}-\frac {3 i A \,{\mathrm e}^{i \left (d x +c \right )}}{8 a d}-\frac {i {\mathrm e}^{i \left (d x +c \right )} A \,b^{2}}{2 d \,a^{3}}-\frac {i {\mathrm e}^{i \left (d x +c \right )} C}{2 a d}+\frac {3 i A \,{\mathrm e}^{-i \left (d x +c \right )}}{8 a d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} A \,b^{2}}{2 d \,a^{3}}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} C}{2 a d}+\frac {b^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) A}{\sqrt {a^{2}-b^{2}}\, d \,a^{4}}+\frac {b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) C}{\sqrt {a^{2}-b^{2}}\, d \,a^{2}}-\frac {b^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) A}{\sqrt {a^{2}-b^{2}}\, d \,a^{4}}-\frac {b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) C}{\sqrt {a^{2}-b^{2}}\, d \,a^{2}}+\frac {A \sin \left (3 d x +3 c \right )}{12 a d}-\frac {A b \sin \left (2 d x +2 c \right )}{4 a^{2} d}\) \(483\)

[In]

int(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*b^2*(A*b^2+C*a^2)/a^4/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-2/a^4*(
((-a^3*A-1/2*A*a^2*b-a*A*b^2-a^3*C)*tan(1/2*d*x+1/2*c)^5+(-2/3*a^3*A-2*a*A*b^2-2*a^3*C)*tan(1/2*d*x+1/2*c)^3+(
-a^3*A-a*A*b^2-a^3*C+1/2*A*a^2*b)*tan(1/2*d*x+1/2*c))/(1+tan(1/2*d*x+1/2*c)^2)^3+1/2*b*(A*a^2+2*A*b^2+2*C*a^2)
*arctan(tan(1/2*d*x+1/2*c))))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 483, normalized size of antiderivative = 2.76 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\left [-\frac {3 \, {\left ({\left (A + 2 \, C\right )} a^{4} b + {\left (A - 2 \, C\right )} a^{2} b^{3} - 2 \, A b^{5}\right )} d x - 3 \, {\left (C a^{2} b^{2} + A b^{4}\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - {\left (2 \, {\left (2 \, A + 3 \, C\right )} a^{5} + 2 \, {\left (A - 3 \, C\right )} a^{3} b^{2} - 6 \, A a b^{4} + 2 \, {\left (A a^{5} - A a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} - 3 \, {\left (A a^{4} b - A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{6} - a^{4} b^{2}\right )} d}, -\frac {3 \, {\left ({\left (A + 2 \, C\right )} a^{4} b + {\left (A - 2 \, C\right )} a^{2} b^{3} - 2 \, A b^{5}\right )} d x - 6 \, {\left (C a^{2} b^{2} + A b^{4}\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) - {\left (2 \, {\left (2 \, A + 3 \, C\right )} a^{5} + 2 \, {\left (A - 3 \, C\right )} a^{3} b^{2} - 6 \, A a b^{4} + 2 \, {\left (A a^{5} - A a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} - 3 \, {\left (A a^{4} b - A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{6} - a^{4} b^{2}\right )} d}\right ] \]

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[-1/6*(3*((A + 2*C)*a^4*b + (A - 2*C)*a^2*b^3 - 2*A*b^5)*d*x - 3*(C*a^2*b^2 + A*b^4)*sqrt(a^2 - b^2)*log((2*a*
b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 -
b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - (2*(2*A + 3*C)*a^5 + 2*(A - 3*C)*a^3*b^2 - 6*A*a*b^4 +
 2*(A*a^5 - A*a^3*b^2)*cos(d*x + c)^2 - 3*(A*a^4*b - A*a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a^6 - a^4*b^2)*d
), -1/6*(3*((A + 2*C)*a^4*b + (A - 2*C)*a^2*b^3 - 2*A*b^5)*d*x - 6*(C*a^2*b^2 + A*b^4)*sqrt(-a^2 + b^2)*arctan
(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - (2*(2*A + 3*C)*a^5 + 2*(A - 3*C)*a^3*b^2
 - 6*A*a*b^4 + 2*(A*a^5 - A*a^3*b^2)*cos(d*x + c)^2 - 3*(A*a^4*b - A*a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a^
6 - a^4*b^2)*d)]

Sympy [F]

\[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos ^{3}{\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \]

[In]

integrate(cos(d*x+c)**3*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)**3/(a + b*sec(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 326 vs. \(2 (158) = 316\).

Time = 0.34 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.86 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=-\frac {\frac {3 \, {\left (A a^{2} b + 2 \, C a^{2} b + 2 \, A b^{3}\right )} {\left (d x + c\right )}}{a^{4}} - \frac {12 \, {\left (C a^{2} b^{2} + A b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{\sqrt {-a^{2} + b^{2}} a^{4}} - \frac {2 \, {\left (6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3} a^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

-1/6*(3*(A*a^2*b + 2*C*a^2*b + 2*A*b^3)*(d*x + c)/a^4 - 12*(C*a^2*b^2 + A*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/
2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/(sqrt(-a^2 +
 b^2)*a^4) - 2*(6*A*a^2*tan(1/2*d*x + 1/2*c)^5 + 6*C*a^2*tan(1/2*d*x + 1/2*c)^5 + 3*A*a*b*tan(1/2*d*x + 1/2*c)
^5 + 6*A*b^2*tan(1/2*d*x + 1/2*c)^5 + 4*A*a^2*tan(1/2*d*x + 1/2*c)^3 + 12*C*a^2*tan(1/2*d*x + 1/2*c)^3 + 12*A*
b^2*tan(1/2*d*x + 1/2*c)^3 + 6*A*a^2*tan(1/2*d*x + 1/2*c) + 6*C*a^2*tan(1/2*d*x + 1/2*c) - 3*A*a*b*tan(1/2*d*x
 + 1/2*c) + 6*A*b^2*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 + 1)^3*a^3))/d

Mupad [B] (verification not implemented)

Time = 21.10 (sec) , antiderivative size = 3942, normalized size of antiderivative = 22.53 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\text {Too large to display} \]

[In]

int((cos(c + d*x)^3*(A + C/cos(c + d*x)^2))/(a + b/cos(c + d*x)),x)

[Out]

((tan(c/2 + (d*x)/2)^5*(2*A*a^2 + 2*A*b^2 + 2*C*a^2 + A*a*b))/a^3 + (4*tan(c/2 + (d*x)/2)^3*(A*a^2 + 3*A*b^2 +
 3*C*a^2))/(3*a^3) + (tan(c/2 + (d*x)/2)*(2*A*a^2 + 2*A*b^2 + 2*C*a^2 - A*a*b))/a^3)/(d*(3*tan(c/2 + (d*x)/2)^
2 + 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 + 1)) - (atan(((((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a
*b^8 + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*
a^4*b^5 - 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 + 16*A*C*a^2*b^7 - 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 -
 20*A*C*a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 + (((8*(4*A*a^8*b^5 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*
a^11*b^2 + 4*C*a^10*b^3 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 + (8*tan(c/2 + (d*x)/2)*(A*b^3*1i + (a^
2*b*(A + 2*C)*1i)/2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/a^10)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2))/a^4)*(A*b
^3*1i + (a^2*b*(A + 2*C)*1i)/2)*1i)/a^4 + (((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a*b^8 + 16*A^2*a^2*b^7 -
 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5 - 16*C^2*a^5*b^
4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 + 16*A*C*a^2*b^7 - 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 - 20*A*C*a^5*b^4 + 12*A*
C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 - (((8*(4*A*a^8*b^5 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*a^11*b^2 + 4*C*a^10*b^3
 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 - (8*tan(c/2 + (d*x)/2)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2)*(8
*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/a^10)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2))/a^4)*(A*b^3*1i + (a^2*b*(A + 2*C
)*1i)/2)*1i)/a^4)/((16*(4*A^3*b^11 - 6*A^3*a*b^10 + 6*A^3*a^2*b^9 - 5*A^3*a^3*b^8 + 2*A^3*a^4*b^7 - A^3*a^5*b^
6 + 4*C^3*a^6*b^5 - 4*C^3*a^7*b^4 + 12*A*C^2*a^4*b^7 - 14*A*C^2*a^5*b^6 + 6*A*C^2*a^6*b^5 - 4*A*C^2*a^7*b^4 +
12*A^2*C*a^2*b^9 - 16*A^2*C*a^3*b^8 + 12*A^2*C*a^4*b^7 - 9*A^2*C*a^5*b^6 + 2*A^2*C*a^6*b^5 - A^2*C*a^7*b^4))/a
^9 + (((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a*b^8 + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*
A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5 - 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 +
16*A*C*a^2*b^7 - 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 - 20*A*C*a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 + (((
8*(4*A*a^8*b^5 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*a^11*b^2 + 4*C*a^10*b^3 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^
12*b))/a^9 + (8*tan(c/2 + (d*x)/2)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/a^
10)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2))/a^4)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2))/a^4 - (((8*tan(c/2 + (d*x)/
2)*(8*A^2*b^9 - 16*A^2*a*b^8 + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^
3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5 - 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 + 16*A*C*a^2*b^7 - 32*A*C*a^
3*b^6 + 28*A*C*a^4*b^5 - 20*A*C*a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 - (((8*(4*A*a^8*b^5 - 6*A*a^9*b
^4 + 2*A*a^10*b^3 - 2*A*a^11*b^2 + 4*C*a^10*b^3 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 - (8*tan(c/2 +
(d*x)/2)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/a^10)*(A*b^3*1i + (a^2*b*(A
+ 2*C)*1i)/2))/a^4)*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2))/a^4))*(A*b^3*1i + (a^2*b*(A + 2*C)*1i)/2)*2i)/(a^4*d)
 - (b^2*atan(((b^2*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a*b^8 +
16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5
 - 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 + 16*A*C*a^2*b^7 - 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 - 20*A*C
*a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 + (b^2*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*((8*(4*A*a^8*b^
5 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*a^11*b^2 + 4*C*a^10*b^3 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 +
(8*b^2*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a
^6 - a^4*b^2))))/(a^6 - a^4*b^2))*1i)/(a^6 - a^4*b^2) + (b^2*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*((8*tan(c
/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a*b^8 + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3
*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5 - 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 + 16*A*C*a^2*b^7
- 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 - 20*A*C*a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 - (b^2*((a + b)*(a -
 b))^(1/2)*(A*b^2 + C*a^2)*((8*(4*A*a^8*b^5 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*a^11*b^2 + 4*C*a^10*b^3 - 8*C*a
^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 - (8*b^2*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*(8
*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^6 - a^4*b^2))))/(a^6 - a^4*b^2))*1i)/(a^6 - a^4*b^2))/((16*(4*A^3*b
^11 - 6*A^3*a*b^10 + 6*A^3*a^2*b^9 - 5*A^3*a^3*b^8 + 2*A^3*a^4*b^7 - A^3*a^5*b^6 + 4*C^3*a^6*b^5 - 4*C^3*a^7*b
^4 + 12*A*C^2*a^4*b^7 - 14*A*C^2*a^5*b^6 + 6*A*C^2*a^6*b^5 - 4*A*C^2*a^7*b^4 + 12*A^2*C*a^2*b^9 - 16*A^2*C*a^3
*b^8 + 12*A^2*C*a^4*b^7 - 9*A^2*C*a^5*b^6 + 2*A^2*C*a^6*b^5 - A^2*C*a^7*b^4))/a^9 + (b^2*((a + b)*(a - b))^(1/
2)*(A*b^2 + C*a^2)*((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a*b^8 + 16*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2
*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5 - 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C
^2*a^7*b^2 + 16*A*C*a^2*b^7 - 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 - 20*A*C*a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^
2))/a^6 + (b^2*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*((8*(4*A*a^8*b^5 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*a^1
1*b^2 + 4*C*a^10*b^3 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 + (8*b^2*tan(c/2 + (d*x)/2)*((a + b)*(a -
b))^(1/2)*(A*b^2 + C*a^2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^6 - a^4*b^2))))/(a^6 - a^4*b^2)))/(a^6
- a^4*b^2) - (b^2*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*((8*tan(c/2 + (d*x)/2)*(8*A^2*b^9 - 16*A^2*a*b^8 + 1
6*A^2*a^2*b^7 - 16*A^2*a^3*b^6 + 13*A^2*a^4*b^5 - 7*A^2*a^5*b^4 + 3*A^2*a^6*b^3 - A^2*a^7*b^2 + 8*C^2*a^4*b^5
- 16*C^2*a^5*b^4 + 12*C^2*a^6*b^3 - 4*C^2*a^7*b^2 + 16*A*C*a^2*b^7 - 32*A*C*a^3*b^6 + 28*A*C*a^4*b^5 - 20*A*C*
a^5*b^4 + 12*A*C*a^6*b^3 - 4*A*C*a^7*b^2))/a^6 - (b^2*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*((8*(4*A*a^8*b^5
 - 6*A*a^9*b^4 + 2*A*a^10*b^3 - 2*A*a^11*b^2 + 4*C*a^10*b^3 - 8*C*a^11*b^2 + 2*A*a^12*b + 4*C*a^12*b))/a^9 - (
8*b^2*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^
6 - a^4*b^2))))/(a^6 - a^4*b^2)))/(a^6 - a^4*b^2)))*((a + b)*(a - b))^(1/2)*(A*b^2 + C*a^2)*2i)/(d*(a^6 - a^4*
b^2))